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High-dimensional geometry of 
population responses in visual cortex
carsen Stringer1,2,6*, Marius Pachitariu1,3,6*, Nicholas Steinmetz3,5, Matteo carandini4,7 & Kenneth D. Harris3,7*

A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and 
uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of 
the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population 
activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance 
scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted 
after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the 
population code could not be smooth, allowing small changes in input to dominate population activity. The theory also 
predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. 
These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in 
neural population codes.

The visual cortex contains millions of neurons, and the patterns of 
activity that images evoke in these neurons form a ‘population code’. 
The structure of this code is largely unknown, due to the lack of tech-
niques that are able to record from large populations. Nonetheless, the 
population code is the subject of long-standing theories.

One such theory is the efficient coding hypothesis1–3, which sug-
gests that the neural code maximizes the transmission of information 
by eliminating correlations in natural image inputs. Such codes are 
high-dimensional and sparse, which can enable complex features to 
be read out by simple downstream networks4–6.

However, several studies have suggested that neural codes are con-
fined to low-dimensional subspaces (or ‘planes’)7–15. Codes of low 
planar dimension are correlated and redundant, allowing for robust 
computations of stimuli despite the presence of noise16,17. Nevertheless, 
low planar dimension is inevitable given stimuli or tasks of limited 
complexity18: the responses to a set of n stimuli, for example, have to 
lie in an n-dimensional subspace. The planar dimension of the cortical 
code thus remains an open question, which can only be answered by 
recording the responses of large numbers of neurons to large numbers 
of stimuli.

Here we recorded the simultaneous activity of approximately  
10,000 neurons in the mouse visual cortex, in response to thousands 
of natural images. We found that stimulus responses were neither 
uncorrelated (‘efficient coding’) nor low-dimensional. Instead, 
responses occupied a multidimensional space, with the variance in  
the nth dimension scaling as a power law n−α, where α ≈ 1. We 
showed mathematically that if variances decay more slowly than a 
power law with exponent α = 1 + 2/d, where d is the dimension of 
the input ensemble, then the space of neural activity must be non- 
differentiable—that is, not smooth. We varied the dimensionality 
of the stimuli d and found that the neural responses respected this 
lower bound. These findings suggest that the population responses 
are constrained by efficiency, to make best use of limited numbers 
of neurons, and smoothness, which enables similar images to evoke 
similar responses.

Simultaneous recordings of over 10,000 neurons
To obtain simultaneous recordings of approximately 10,000 cells from 
mouse V1, we used resonance-scanning two-photon calcium micros-
copy, using 11 imaging planes spaced at 35 μm (Fig. 1a). The slow 
time course of the GCaMP6s sensor enabled activity to be detected at 
a scan rate of 2.5 Hz, and an efficient data processing pipeline19 yielded 
the activity of a large numbers of cells (Fig. 1b). Natural image scenes 
obtained from the ImageNet database20 were presented on an array of 
three monitors surrounding the mouse (Fig. 1c), at an average of one 
image per second. Cells were tuned to these natural image stimuli: in 
experiments in which responses to 32 images were averaged over 96 
repeats (Fig. 1d), stimulus responses accounted for 55.4 ± 3.3% (mean 
± s.e.m., n = 4 recordings) of the trial-averaged variance. Consistent 
with previous reports21–23, neuronal responses were sparse: only a small 
fraction of cells (13.4 ± 1.0%; mean ± s.e.m., n = 4 recordings) were 
driven more than two standard deviations above their baseline firing 
rate by any particular stimulus.

For our main experiments we assembled a sequence of 2,800 image 
stimuli. These stimuli were presented twice in the same order, to 
maximize the number of images presented while still allowing anal-
yses based on cross-validation (Fig. 1e). Most neurons (81.4 ± 5.1%; 
mean ± s.e.m., n = 7 recordings) showed correlation between repeats 
at P < 0.05 (Extended Data Fig. 1a, b). Nevertheless, consistent with 
previous reports24, the responses showed substantial trial-to-trial var-
iability. Cross-validation showed that stimulus responses accounted 
for, on average, 13.2 ± 1.5% of the single-trial variance (Extended 
Data Fig. 1c), and the average signal-to-noise ratio was 17.3 ± 2.4% 
(Fig. 1f). This level of trial-to-trial variability was not due to our par-
ticular recording method: measuring responses to the same stimuli 
electrophysiologically yielded a similar signal-to-noise ratio (Extended 
Data Fig. 2). Despite this trial-to-trial variability, however, population 
activity recorded during a single trial contained substantial information 
about the sensory stimuli. A simple nearest-neighbour decoder, trained 
on one repeat and tested on the other, was able to identify the presented 
stimulus with up to 75.5% accuracy (Fig. 1g; range 25.4–75.5%; median 
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41.7% compared to a chance level of 0.036%, n = 7 recordings). The 
decoding accuracy did not saturate at a population size of 10,000, which 
suggests that performance would further improve with even larger neu-
ral populations.

The visual properties of neurons were consistent with those reported 
previously23,25, and were highly diverse across the population. The 
responses of the neurons were only partially captured by classical linear– 
nonlinear models, which is consistent with previous studies of the 
visual cortex26–30. We calculated a receptive field for each cell from its 
responses to natural images in two ways: by fitting linear receptive fields 
regularized with a reduced-rank method; or by searching for an optimal 
Gabor filter that was rectified to simulate simple cell responses, and 
quadrature filtered to simulate complex cell responses. As expected26–30, 
both receptive field models explained only a minor portion of the stim-
ulus-related variance: the linear model explained 11.4 ± 0.7% (mean ± 
s.e.m.), and the Gabor model explained 18.5 ± 1.0% (mean ± s.e.m., 
n = 7 recordings each). As expected from retinotopy, there was overlap 

between the receptive field locations of simultaneously recorded neu-
rons, but the sizes and shapes of the receptive fields were highly diverse 
(Fig. 1h, Extended Data Fig. 3).

Power-law scaling of dimensionality
To characterize the geometry of the population code for visual stimuli, 
we developed a method of cross-validated principal component analy-
sis (cvPCA). cvPCA measures the reliable variance of stimulus-related 
dimensions, excluding trial-to-trial variability from unrelated cognitive 
and/or behavioural variables or noise. It accomplishes this by comput-
ing the covariance of responses between training and test presentations 
of an identical stimulus ensemble (Fig. 2a). Because only stimulus- 
related activity will be correlated across presentations, cvPCA provides 
an unbiased estimate of the stimulus-related variance. In simulations 
that use the same noise statistics as our recordings, we confirmed that 
this technique recovers the true variances (Extended Data Figs. 4, 5, 
Supplementary Discussion 1).

This method revealed that the visual population responses did not 
lie on any low-dimensional plane within the space of possible firing 
patterns. The amount of variance explained continued to increase as 
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Fig. 1 | Population coding of visual stimuli. a, Simultaneous recording 
of approximately 10,000 neurons using 11-plane two-photon calcium 
imaging. b, Randomly pseudocoloured cells in an example imaging plane. 
c, An example stimulus spans three screens surrounding the head of the 
mouse. d, Mean responses (trial-averaged) of 65 randomly chosen neurons 
to 32 image stimuli (96 repeats, z-scored, scale bar represents standard 
deviations, one recording out of four is shown). e, A sequence of 2,800 
stimuli was repeated twice during the recording. f, Neural stimulus tuning. 
The plot shows the distribution of single-cell signal-to-noise ratios (SNR) 
(2,800 stimuli, two repeats). Colours denote recordings; arrows represent 
means. g, Stimulus decoding accuracy as a function of neuron count for 
each recording. h, Example receptive fields (RFs) fit using reduced-rank 
regression or Gabor models (z-scored) (one recording shown, out of 
seven). i, Distribution of the receptive field centres, plotted on the left and 
centre screens (lines denote screen boundaries). Each cross represents a 
different recording, with 95% of the receptive field centres of the neurons 
within the error bars.
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Fig. 2 | Visual cortical responses are high-dimensional with power-law 
eigenspectra. a, The eigenspectrum of visual stimulus responses was 
estimated by cvPCA, projecting singular vectors from the first repeat 
onto responses from the second. PC, principal component. b, Cumulative 
fraction of variance in planes of increasing dimension, for an ensemble of 
2,800 stimuli (blue) and for 96 repeats of 32 stimuli (green). The dashed 
line indicates 32 dimensions. c, Eigenspectrum plotted in descending 
order of training-set singular value for each dimension, averaged across 7 
recordings (shaded error bars represent s.e.m.). The black line denotes the 
linear fit of 1/nα. d, Eigenspectra of each recording plotted individually.  
e, Histogram of power-law exponents α across all recordings. f, Cumulative 
eigenspectrum for a simple/complex Gabor model fit to the data (pink) 
superimposed on the true data (blue). g, Eigenspectra computed from 
random subsets of recorded neurons. Different colours indicate the 
different fractions of neurons. h, The same analysis as in g, but for random 
subsets of stimuli. i, Pearson correlation of log variance and log dimension 
over dimensions 11–500, as a function of fraction analysed (1 indicates a 
power law). j, Power-law exponents of the spectra plotted in g, h.
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further dimensions were included, without saturating at any dimen-
sionality below the maximum possible (Fig. 2b). As a control anal-
ysis, we applied cvPCA to the neural responses obtained when only 
32 images were shown many times— the reliable component of these 
responses must, by definition, lie in a 32-dimensional subspace—and as 
expected we observed a saturation of the variance after 32 dimensions.

The analysis of our data using cvPCA revealed an unexpected find-
ing: the fraction of neural variance in planes of successively larger 
dimensions followed a power law. The eigenspectrum—the function 
summarizing the variance of the nth principal component—had a 
magnitude that was approximately proportional to 1/n (Fig. 2c); this 
reflects successively less variance in dimensions that encode finer 
stimulus features (Extended Data Fig. 6). The power-law structure 
did not result from averaging over experiments: analysis of data from 
each mouse individually revealed power-law behaviour in every case 
(Fig. 2d). The scaling exponent of the power law was on average just 
above 1 (1.04 ± 0.02; mean ± s.e.m., n = 7 recordings, Fig. 2e). This 
eigenspectrum reflected correlations between neurons, and was not 
the consequence of a log-normal distribution of firing rates or sig-
nal variance (Extended Data Fig. 7). In addition, this result could not 
be explained by classical models of visual cortical receptive fields: the 
model of visual responses based on Gabor receptive fields with param-
eters fit to single cell responses (Fig. 1h) had lower dimensionality than 
the neural responses (Fig. 2f).

The range of dimensions over which the power law held grew with 
the number of neurons and stimuli that were analysed. To show this, we 
repeated the analyses on randomly chosen subsets of neurons or stimuli 
(Fig. 2g, h). Both the correlation coefficient and the slope (which repre-
sents the power-law exponent) approached 1 for increasing subset sizes 
(Fig. 2i, j, Extended Data Fig. 8). Electrophysiological recordings— 
with fewer recorded neurons and fewer presented stimuli—had the 
same eigenspectrum as a similarly-sized subset of the two-photon data 
(Extended Data Fig. 9). We conclude that the power law held accurately 
over approximately two orders of magnitude in these recordings, and 

we infer that it would probably extend further if more neurons and 
stimuli could be analysed.

Power-law and stimulus statistics
The power law followed by the neural eigenspectrum could not be 
explained by the well-known power-law structure of natural images31,32 
(Fig. 3a). To show this, we removed the image power law by spatially 
whitening the images, and presented the whitened stimuli to three of 
the mice. Although the power law in the image pixels was abolished, the 
power law in the neural responses remained (Fig. 3b). Furthermore, the 
eigenspectrum of neural responses could not be explained by straight-
forward receptive field properties: the model of visual responses based 
on Gabor receptive fields produced eigenspectra that decayed more 
quickly than the actual responses, and were worse fit by a power law 
(P < 10−3, Wilcoxon rank-sum test on Pearson correlations, Fig. 3a, b).

The power-law eigenspectra also did not arise from other character-
istics of natural images. To investigate the role of long-range image cor-
relations, we constructed spatially localized image stimuli, in which the 
region outside the classical receptive field was replaced by grey. Again, 
the power law persisted with an exponent close to 1 (Fig. 3c). Finally, we 
removed any natural image structure and recorded responses to sparse 
noise stimuli (Fig. 3d). Again, we observed a power-law spectrum with 
an exponent close to 1 (1.13 ± 0.04; mean ± s.e.m., n = 3 recordings); 
although it was higher than for the natural image stimuli (P = 0.067, 
Wilcoxon two-sided rank-sum test). As with natural images, these 
power laws became more accurate the more neurons and stimuli were 
analysed (Extended Data Fig. 10). We therefore conclude that the pow-
er-law spectra exhibited by neural populations do not reflect the neural 
processing of a property that is specific to natural images.

Power-law and stimulus dimensionality
Power-law eigenspectra are observed in many scientific domains, and 
are related to the smoothness of the underlying functions. For example, 
if a function of one variable is differentiable, its Fourier spectrum must 
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a faster neural eigenspectrum decay with exponent α = 1.49 (e), images 
projected into 4 dimensions, for which α = 1.65 (f), drifting gratings, a 
one dimensional stimulus ensemble, for which α = 3.51 (g). h, i, Summary 
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decay asymptotically faster than a power law of exponent 1 (see, for 
example, a previously published study33). We therefore theorized that 
the variance power law might be related to smoothness of the neural 
responses. We showed mathematically that if the sensory stimuli pre-
sented can be characterized by d parameters, and if the mapping from 
these parameters to (noise-free) neural population responses is differ-
entiable, then the population eigenspectrum must decay asymptoti-
cally faster than a power law of exponent α = 1 + 2/d (Supplementary 
Discussion 2). Conversely, if the eigenspectrum decays slower than this, 
a smooth neural code is impossible: its derivative tends to infinity with 
the number of neural dimensions, and the neural responses must lie on 
a fractal rather than a differentiable manifold.

This mathematical analysis gave rise to an experimental prediction. 
For a high-dimensional stimulus ensemble such as a set of natural 
images, d will be large and so 1 + 2/d ≈ 1, which is close to the expo-
nent that we observed. However, for smaller values of d, the power 
law must have larger exponents if fractality is to be avoided. We there-
fore hypothesized that lower-dimensional stimulus sets would evoke 
population responses with larger power-law exponents. We obtained 
stimulus ensembles of dimensionality d = 8 and d = 4 by projecting the 
natural images onto a set of d basis functions (Fig. 3e, f). For a stimulus 
ensemble of dimensionality d = 1 we used drifting gratings, parame-
terized by a single direction variable. Consistent with the hypothesis, 
stimulus sets with d = 8, 4 and 1 yielded power-law scaling of eigen-
values with exponents of 1.49, 1.65 and 3.51, near but above the lower 
bounds of 1.25, 1.50 and 3.00 that are predicted by the 1 + 2/d expo-
nent (Fig. 3h). The eigenspectra of simulated responses from a Gabor 
receptive field model fit to the data decayed even faster, suggesting a 
differentiable but lower-dimensional representation (Fig. 3i). These 
results suggest that the neural responses lie on a manifold that is almost 
as high-dimensional as is possible without becoming fractal.

Discussion
We found that the variance of the nth dimension of visual cortical 
population activity decays as a power of n, with exponent α ≈ 1 + 
2/d where d is the dimensionality of the space of sensory inputs. The 
population eigenspectrum reflects the fraction of neural variance that 
is devoted to representing coarse and fine stimulus features (Extended 

Data Fig. 6, Supplementary Discussion 2, 3). If the eigenspectrum were 
to decay slower than n−1−2/d then the neural code would emphasize fine 
stimulus features so strongly that it could not be differentiable. Our 
results therefore suggest that the eigenspectrum of the visual cortical 
code decays almost as slowly as is possible while still allowing smooth 
neural coding.

To illustrate the consequences of eigenspectrum decay for neural 
codes, we simulated various one-dimensional coding schemes in pop-
ulations of 1,000 neurons, and visualized them by random projection 
into three-dimensional space (Fig. 4). The stimulus was parameterized 
by a single circular variable, such as the direction of a grating. A low- 
dimensional code with two non-zero eigenvalues produced a circular 
neural manifold (Fig. 4a). An uncorrelated, high-dimensional code in 
which each neuron responded to a different stimulus produced 1,000 
equal variances, which is consistent with the efficient coding hypothesis 
(Fig. 4b). However this code did not respect distances: responses to 
stimuli separated by just a few degrees differed as much as responses 
to diametrically opposite stimuli, and the neural manifold appeared 
as a spiky, discontinuous ball. Power-law codes (Supplementary 
Discussion 2.7, example 2) show a scale-free geometry, the smoothness 
of which depends on the exponent α (Fig. 4c–e). A power-law code 
with α = 2 (Fig. 4c) was a non-differentiable fractal because the many 
dimensions that encode fine stimulus details together outweighed the 
few dimensions that encode large-scale stimulus differences. At the 
critical exponent of α = 3 (which is equal to 1 + 2/d, because d = 1), 
the neural manifold was on the border of differentiability; the code 
represents fine differences between stimuli while still preserving large-
scale stimulus features (Fig. 4d). A higher exponent led to a smoother 
neural manifold (Fig. 4e).

Neural representations with close-to-critical power-law eigenspectra 
may provide the brain with codes that are as efficient and flexible as 
possible while still allowing robust generalization. The efficient cod-
ing hypothesis suggests that information is optimally encoded when 
responses to different stimuli are as different as possible. However, 
such codes carry a cost: if the neural responses to any pair of stimuli 
were orthogonal, then stimuli that differ only in tiny details would have 
completely different representations (Supplementary Discussion 2.1). 
Similar behaviour can be seen in deep-neural-network architectures 
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that misclassify ‘adversarial images’ that differ imperceptibly from the 
training examples34,35. We suggest that a power-law code that is just 
above the critical exponent represents a balance between the efficiency 
of high-dimensional codes and the robustness of smooth codes, which 
enable generalization.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
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MEthodS
All experimental procedures were conducted according to the UK Animals 
Scientific Procedures Act (1986). Experiments were performed at University 
College London under personal and project licenses released by the Home Office 
following appropriate ethics review.
Animals and surgery. We used mice that were bred to express GCaMP6s in 
excitatory neurons in our recordings: 13 recordings from TetO-GCaMP6s × 
Emx1-IRES-Cre mice (available as JAX 024742 and JAX 005628); 3 recordings 
from a Camk2a-tTA, Ai94 GCaMP6s 2tg × Emx1-IRES-Cre mouse (available 
as JAX 024115 and JAX 005628); and 2 recordings from a Camk2a-tTA, Ai94 
GCaMP6s 2tg × Rasgrf-Cre mouse (available as JAX 024115 and JAX 022864). 
We also used mice bred to express tdTomato in inhibitory neurons (GAD-IRES-
Cre × CAG-tdTomato, available as JAX 010802 and JAX 007909) in 14 record-
ings. In this case, GCaMP6s was expressed virally, and excitatory neurons were 
identified by lack of tdTomato expression. These mice were male and female, 
with ages ranging from 2 months to 8 months. We recorded from sufficient mice 
to draw scientific conclusions (8 mice in total). There was no randomization or 
blinding done in the study.

Surgical methods were similar to those described elsewhere19,36. In brief, sur-
geries were performed in adult mice (postnatal day (P)35–P125) under isoflurane 
anaesthesia (5% for induction, 0.5–1% during the surgery) in a stereotaxic frame. 
Before surgery, Rimadyl was administered as a systemic analgesic and lidocaine 
was administered locally at the surgery site. During the surgery we implanted a 
head-plate for subsequent head-fixation, and made a craniotomy of 3–4 mm in 
diameter with a cranial window implant for optical access. In Gad-Cre × tdTo-
mato transgenic mice, we targeted virus injections (AAV2/1-hSyn-GCaMP6s, 
University of Pennsylvania Vector Core, 50–200 nl, 1–3 × 1012 GC ml−1) to 
monocular V1 (2.1–3.3 mm laterally and 3.5–4.0 mm posteriorly from bregma), 
using a beveled micropipette and a Nanoject II injector (Drummond Scientific 
Company) attached to a stereotaxic micromanipulator. To obtain large fields of 
view for imaging, we typically performed 4–8 injections at nearby locations, at 
multiple depths (around 500 μm and around 200 μm). Rimadyl was then used as 
a post-operative analgesic for three days, and was delivered to the mice through 
their drinking water.
Data acquisition. We used a two-photon microscope (Bergamo II multiphoton 
imaging microscope, Thorlabs) to record neural activity, and ScanImage37 for data 
acquisition, obtaining 10,622 ± 1,690 (mean ± s.d.) neurons in the recordings. 
The recordings were performed using multi-plane acquisition controlled by a 
resonance scanner, with planes spaced 30–35 μm apart in depth. Ten or twelve 
planes were acquired sequentially, scanning the entire stack repeatedly at 3 Hz or 
2.5 Hz. Because plane scanning was not synchronized to stimulus presentation, we 
aligned the stimulus onsets to each of the planes separately, and computed stimulus 
responses from the first two frames acquired after stimulus onset for each plane.

The mice were free to run on an air-floating ball and were surrounded by three 
computer monitors arranged at 90° angles to the left, front and right of the mouse, 
so that the head of the mouse was approximately in the geometric centre of the 
setup. Data from running and non-running periods were analysed together.

For each mouse, recordings were made over multiple days, always returning 
to the same field of view (in one mouse, two fields of view were used). For each 
mouse, a field of view was selected on the first recording day such that 10,000 
neurons could be observed, with clear calcium transients and a retinotopic loca-
tion (identified by neuropil fluorescence) localized on the monitors. If more than 
one potential field of view satisfied these criteria, we chose either a horizontally 
and vertically central retinotopic location, or a lateral retinotopic location, at 90° 
from the centre but still centred vertically. The retinotopic location of the field of 
view (central or lateral) was unrelated to variance spectra. We also did not observe 
differences between recordings obtained from different modes of GCaMP expres-
sion (transgenic versus viral injection). Thus, we pooled data over all conditions.
Visual stimuli. During two-photon recordings, all stimuli other than sparse noise 
stimuli were presented for 0.5 s, alternating with a grey-screen inter-stimulus 
interval lasting a random time between 0.3 and 1.1 s. During electrophysiological 
recordings, all stimuli were presented for 400 ms, with a uniformly distributed 
inter-stimulus interval of 300–700 ms.

Image stimuli were selected from the ImageNet database20, from ethologically 
relevant categories: ‘birds’, ‘cat’, ‘flowers’, ‘hamster’, ‘holes’, ‘insects’, ‘mice’, ‘mush-
rooms’, ‘nests’, ‘pellets’, ‘snakes’ and ‘wildcat’. Images were chosen manually to 
ensure that less than 50% of the image was a uniform background, and to contain 
a mixture of low and high spatial frequencies. The images were uniformly contrast- 
normalized. This was achieved by subtracting the local mean brightness and dividing  
by the local mean contrast (standard deviation of pixel values); the local mean 
and standard deviation were both computed using a Gaussian filter of standard 
deviation 30°. Each presented stimulus consisted of a different normalized image 
from ImageNet (2,800 different images) replicated across all three screens, but at 
a different rotation on each screen (Fig. 1c).

For the main two-photon recordings, these 2,800 stimuli were presented twice, 
in the same order each time. In the electrophysiological recordings, 700 of these 
same stimuli were presented twice in the same order each time. Additionally, in 
a subset of imaged mice (4 out of 6), we presented a smaller set of 32 images, pre-
sented in a randomized order 90–114 times, to enable more accurate estimation 
of trial-averaged responses.

We also presented partially spatially whitened versions of the 2,800 natural  
images. To compute spatially whitened images, we first computed the two- 
dimensional Fourier spectrum for each image, and averaged the spectra across 
images. We then whitened each image in the frequency domain by dividing its 
Fourier transform by the averaged Fourier spectrum across all images with a small 
constant value added for regularization purposes. The rescaled Fourier transform 
of the image was transformed back into the pixel domain by computing its inverse 
two-dimensional Fourier transform and retaining the real part. Each image was 
then intensity-scaled to have the same mean and standard deviation pixel values 
as the original.

The eight- and four-dimensional stimuli were constructed using a reduced-rank 
regression model. We first used reduced-rank regression to predict the neuronal 
population responses R from the natural images I (Npixels × Nstimuli) via a d- 
dimensional bottleneck:

=R A BIT

where A is a matrix of size d × Nneurons and B is a matrix of size d × Npixels. The 
dimensionality d was either eight or four depending on the set of stimuli being 
constructed. The columns of B represent the image dimensions that linearly explain 
the most variance in the neural population responses. The stimuli were the original 
2,800 natural images projected onto the reduced-rank subspace B: Ilow-d = BΤBI.

In addition to natural image stimuli, we also presented drifting gratings and 
sparse noise. Drifting gratings of 32 directions, spaced evenly at 11.25°, were pre-
sented 70–128 times each, lasting 0.5 s each, and with a grey-screen inter-stimulus 
interval between 0.3 and 1.1 s. They were full-field stimuli (all three monitors) and 
their spatial frequency was 0.05 cycles per degree and their temporal frequency 
was 2 Hz.

Sparse noise stimuli consisted of white or black squares on a grey background. 
Squares were of size 5°, and changed intensity every 200 ms. On each frame, the 
intensity of each square was chosen independently, as white with 2.5% probability, 
black with 2.5% probability, and grey with 95% probability. The sparse noise movie 
contained 6,000 frames, lasting 20 min, and the same movie was played twice to 
allow cross-validated analysis.

Spontaneous activity was recorded for 30 min with all monitors showing a grey 
or black background, in all but six of 32 image set recordings. In three recordings of 
32-natural image responses and three recordings of drifting grating responses, we 
interspersed the spontaneous activity, recording 30 s of spontaneous grey-screen 
activity in between each set of 32 stimuli. In all recordings but these 6, there were 
also occasional blank stimuli (1 out of every 20 stimuli in the 2,800 natural image 
stimuli). The activity during these non-stimulus periods was used to project out 
spontaneous dimensions from the neuronal population responses (see below).
Calcium imaging processing. Calcium movie data was processed using the 
Suite2p toolbox19,36, available at https://www.github.com/cortex-lab/Suite2P.

In brief, the Suite2p pipeline consists of registration, cell detection, region of 
interest (ROI) classification, neuropil correction and spike deconvolution. Movie 
frames are registered using 2D translation estimated by regularized phase cor-
relation, subpixel interpolation and kriging. To detect ROIs (corresponding to 
cells), Suite2p clusters correlated pixels, using a low-dimensional decomposition 
of the data to accelerate processing. The number of ROIs is determined automat-
ically by a threshold on pixel correlations. Finally, ROIs were classified as somatic 
or non-somatic using a classifier trained on a set of human-curated ROIs. The 
classifier reached 95% agreement on test data, thus allowing us to skip manual 
curation for most recordings. For neuropil correction, we used a previously pub-
lished approach38, subtracting from each ROI signal the surrounding neuropil 
signal scaled by a factor of 0.7; all pixels attributed to an ROI (somatic or not) were 
excluded from the neuropil trace. After neuropil subtraction, we further subtracted 
a running baseline of the calcium traces with a sliding window of 60 s to remove 
long-timescale additive baseline shifts in the signals. Fluorescence transients were 
estimated using non-negative spike deconvolution39 with a fixed timescale of cal-
cium indicator decay of 2 s, a method that we found to outperform others on 
ground-truth data40. Finally, the deconvolved trace of each cell was z-scored with 
respect to the mean and standard deviation of the trace of that cell during a 30-min 
period of grey-screen spontaneous activity before or after the image presentations.

All of the processed deconvolved calcium traces are available on figshare41 
(https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_
cortex_in_response_to_2_800_natural_images/6845348), together with the image 
stimuli.

https://www.github.com/cortex-lab/Suite2P
https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_cortex_in_response_to_2_800_natural_images/6845348
https://figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_cortex_in_response_to_2_800_natural_images/6845348
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Data acquisition and processing (electrophysiology). Neuropixels electrode 
arrays42 were used to record extracellularly from neurons in six mice. The 
mice were between 8 weeks old and 24 weeks old at the time of recording, and 
were of either sex. The genotypes of the mice were Slc17a7-Cre;Ai95, Snap25-
GCaMP6s, TetO-GCaMP6s;CaMKIIa-tTA, Ai32;Pvalb-Cre (two mice), or Emx1-
Cre;CaMKIIa-tTA;Ai94. In some cases, other electrophysiological recordings had 
been made from other locations in the days preceding the recordings reported 
here. In all cases, a brief (less than 1 h) surgery to implant a steel headplate and 
3D-printed plastic recording chamber (12-mm diameter) was first performed. 
After recovery, mice were acclimatized to head-fixation in the recording setup. 
During head-fixation, mice were seated on a plastic apparatus with forepaws on 
a rotating rubber wheel (five mice) or were on a Styrofoam treadmill and able 
to run (one mouse). Three 20 × 16 cm TFT-LCD screens (LG LP097QX1) were 
positioned around the mouse at right angles at a distance of 10 cm, covering a total 
visual angle of 270 × 78 degrees. On the day of recording, mice were again briefly 
anaesthetized with isoflurane while up to eight small craniotomies were made with 
a dental drill. After several hours of recovery, mice were head-fixed in the set-up. 
Probes had a silver wire soldered onto the reference pad and shorted to ground; 
these reference wires were connected to a Ag/AgCl wire positioned on the skull. 
The craniotomies as well as the wire were covered with saline-based agar. The agar 
was covered with silicone oil to prevent drying. Probes were each mounted on a 
rod held by an electronically positionable micromanipulator (uMP-4, Sensapex) 
and were then advanced through the agar and through the dura. Once electrodes 
punctured the dura, they were advanced slowly (10 μm s−1) to their final depth 
(4 or 5 mm deep). Electrodes were allowed to settle for approximately 15 min 
before starting recording. Recordings were made in external reference mode with 
local field potential (LFP) gain = 250 and action potential (AP) gain = 500, using 
SpikeGLX software. Data were preprocessed by re-referencing to the common 
median across all channels. Six recordings were performed in six different mice, 
with a total of 14 probes in visual cortex across all experiments.

We spike-sorted the data using a modification of Kilosort43 that tracks drifting 
clusters, called Kilosort236,44, available at https://www.github.com/MouseLand/
Kilosort2. Without the modifications, the original Kilosort and similar algorithms 
can split clusters according to drift of the electrode. Kilosort2, in comparison, 
tracks neurons across drift levels and for longer periods of time (around 1 h in 
our case).
Removal of ongoing activity dimensions. As shown previously36, approximately 
half of the shared variance of visual cortical population activity is unrelated to 
visual stimuli, but represents behaviour-related fluctuations. This ongoing activity 
continues uninterrupted during stimulus presentations, and overlaps with stim-
ulus responses only along a single dimension. Because the present study is purely 
focused on sensory responses, we projected out the dimensions corresponding 
to ongoing activity before further analysis. The top 32 dimensions of ongoing 
activity were found by performing a PCA on the z-scored ongoing neural activity 
recorded during a 30-min period of grey-screen stimuli before or after the image 
presentations. To remove these dimensions from stimulus responses, the stimulus- 
driven activity was also first z-scored (using the mean and variance of each neuron 
computed from spontaneous activity), then the projection onto the 32 top sponta-
neous dimensions was subtracted (Extended Data Fig. 4).

In the electrophysiological recordings, we considered stimulus responses in 
a window of 50 ms or 500 ms following stimulus onset. Therefore, we computed 
the ongoing activity using these two different bin sizes (50 ms or 500 ms). Then 
we z-scored the stimulus responses by this ongoing activity. Next we computed 
the top ten PCs of the ongoing activity (in both bin sizes) and then subtracted the 
projection of the stimulus responses onto these dimensions.
Receptive field estimation. We estimated the receptive fields of the neurons, either 
using a reduced-rank regression model or using a simple/complex Gabor model. In 
both cases, the model was fitted to the mean response of each neuron to half of the 
2,800 images (Itrain) over the two repeats. The performance of the model was tested 
on the mean response of each neuron to the other half of the 2,800 images (Itest).
Reduced-rank receptive field estimation. To estimate a linear receptive field for 
each neuron, we used reduced-rank regression45, a self-regularizing method that 
allowed us to fit the responses of all neurons to a single repeat of all 2,800 image 
stimuli. Reduced-rank regression predicts high-dimensional outputs from high- 
dimensional inputs through a linear low-dimensional hidden ‘bottleneck’ rep-
resentation. We used a 25-dimensional hidden representation to predict the activity 
of each neuron from the image pixel vectors, taking the resulting regressor matrices 
as the linear receptive fields. These receptive fields explained 11.4 ± 0.7% (mean 
± s.e.m., n = 7 recordings) of the stimulus-related variance on the test set. These 
were z-scored before display in Fig. 1h and Extended Data Fig. 3a.
Model-based receptive field estimation. To fit classical simple/complex receptive 
fields to each cell, we simulated the responses of a convolutional grid of Gabor 
filters to the natural images, and fit each neuron with the filter response most 
correlated to its response.

The Gabor cell filters G(x) were parametrized by a spatial frequency f, orien-
tation θ, phase ψ, size α and eccentricity β. Defining u and v to be unit vectors 
pointing parallel and perpendicular to the orientation θ:

ψ= π ⋅ + β α− ⋅ + ⋅ /x x uG f( ) cos(2 )e x u x v(( ) ( ) ) 22 2 2

We constructed 12,288 Gabor filters, with centres spanning a 9 by 7 grid spaced 
at 5 pixels, and with parameters f, θ, φ, α and β ranging from (0.01, 0, 0, 3, 1) 
to (0.13, 157, 315, 12, 2.5) with (7, 8, 8, 4, 4) points sampled of each parameter, 
respectively. The parameters were equally spaced along the grid (for example, f was 
sampled at 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13).

Simple cell responses were simulated by passing the dot product of the image 
with the filter through a rectifier function r(x) = max(0, x). Complex cell responses 
were simulated as the root-mean-square response of each unrectified simple cell 
filter and the same filter with phase ψ shifted by 90°. The activity of a neuron was 
predicted as a linear combination of a simple cell and its complex cell counter-
part, with weights estimated by linear regression. Each neuron was assigned to 
the filter which best predicted its responses to the training images (Extended Data 
Fig. 3b–h). This simple/complex Gabor model explained 18.4 ± 0.1% (mean ± 
s.e.m.) of the stimulus-related variance on the test set.

We also evaluated a model of Gabor receptive fields including divisive normal-
ization46. To do so, the response of each of the modelled simple or complex cell 
filters was divided by the summed, normalized responses of all the other simple and 
complex cells at this retinotopic location. The experimentally measured response 
of each neuron was then predicted as a linear combination of simple and complex 
responses to the best-fitting Gabor, with weights estimated by linear regression. In 
total, 45.4% ± 1.0% (mean ± s.e.m.) of cells were better fit by the divisive normaliza-
tion model. However, although divisive normalization changed the optimal param-
eters fit to many cells (Extended Data Fig. 3i–n), the resulting eigenspectra were 
indistinguishable from a model with no normalization (Extended Data Fig. 3o–u).
Sparseness estimation. To estimate the sparseness of single-cell responses to the 
image stimuli, we counted how many neurons were driven more than two stand-
ard deviations above their baseline rate by any given stimulus. This was estimated 
using 4 experiments in which 32 natural images were repeated more than 90 times. 
We computed the tuning curve of each neuron by averaging over all repeats. The 
standard deviation of the tuning curve is computed for each neuron across stim-
uli. The baseline rate was defined as the mean firing rate during all spontaneous 
activity periods, without visual stimuli. A neuron was judged as responsive to a 
given stimulus if its response was more than two times this standard deviation 
plus its baseline firing rate.
Decoding accuracy from 2,800 stimuli. To decode the stimulus identity from 
the neural responses (Fig. 1g), we built a simple nearest-neighbour decoder based 
on correlation. The first stimulus presentation was used as the training set while 
the second presentation was used as the test set. We correlated the population 
responses for an individual stimulus in the test set with the population responses 
from all stimuli in the training set. The stimulus with the maximum correlation was 
then assigned as our prediction. We defined the decoding accuracy as the fraction 
of correctly labelled stimuli.
Signal-to-noise ratio and explained variance. To compute the tuning-related  
SNR (Fig. 1f), we first estimated the signal variance of each neuron V̂sig as the 
covariance of its response to all stimuli across two repeats (for neuron c, 

=V f c s f c sˆ Cov[ ( , ), ( , )]ssig 1 2
   where fr(c,s) is the response of neuron c to stimulus s 

on repeat r, see Supplementary Discussion 1). The noise variance = −V V Vˆ ˆ
noise tot sig 

was defined as the difference between the within-repeat variance (reflecting both 
signal and noise) and this signal variance estimate, and the SNR was defined as 
their ratio. The SNR estimate is positive when a neuron has responses to stimuli 
above its noise baseline; note that as V̂sig is an unbiased estimate, it can take negative 
values when the true signal variance is zero.

To compute the percentage of explained variance for each neuron (Extended 
Data Fig. 1c), we divided the estimated signal variance by the total variance across 
trials (averaged across the repeats):

=
+

V̂

f c s f c s
EV

(Var [ ( , )] Var [ ( , )])s s

sig
1
2 1 2

Note that this formula is similar to the Pearson correlation of the responses of a 
neuron between two repeats. In the Pearson correlation the numerator is the same, 
equal to the covariance between repeats, but the denominator is the geometric 
rather than arithmetic mean of the variances of the two repeats.
cvPCA method. The cvPCA method is fully described in Supplementary 
Discussion 1, characterized mathematically in Supplementary Discussion 1.1 and 
3.6, and analysed in simulation in Extended Data Fig. 5. In brief, the difference 
between this approach and standard PCA (for example, see previous studies47,48) 
is that it compares the activity on training and test repeats to obtain an estimate 

https://www.github.com/MouseLand/Kilosort2
https://www.github.com/MouseLand/Kilosort2
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of the stimulus-related (‘signal’) variance, discounting variance from trial-to-trial 
variability (‘noise’).

Denote the response of neuron c to repeat r of stimulus s by fr(c, s), define the 
signal as the expected response, which will be equal for both repeats: 

Eφ =c s f c s( , ) [ ( , )]r
, and the noise on repeat r to be the residual after the expected 

response is subtracted: νr(c, s) = fr(c, s) − φ(c, s). By definition, the noise has zero 
expectation: E ν =ν c s c s[ ( , ) , ] 0rr

 for all r, c, and s. Let ûn denote the nth PC eigen-
vector, computed from repeat 1.

If we estimated the variance of the projection of activity onto ûn using a single 
repeat, it would contain a contribution from both the signal and the noise. 
However, because stimulus-independent variability is by definition uncorrelated 
between repeats of the same stimulus, we can obtain an unbiased estimate of the 
signal variance, from the covariance across these independent repeats:

E ∑
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Thus, if un is an eigenvector of the population signal variance, the cvPCA 
method will produce an unbiased estimate of the signal PC variances. As shown 
in Supplementary Discussion 1.1, this will occur if response variability comprises 
a mixture of multiplicative response gain changes, correlated additive variability 
orthogonal to the stimulus dimensions, and uncorrelated noise. Although additive 
variability in the signal space could in principle downwardly bias the estimated signal 
variance, other studies confirm that under conditions similar to those analysed here 
there is little additive variability in the signal space36; furthermore, simulations con-
firm that the amount of such variability present in our recordings does not substan-
tially bias the estimation of signal eigenspectra with cvPCA (Extended Data Fig. 5).

We ran cvPCA ten times on each dataset, on each iteration randomly sam-
pling the population responses of each stimulus from the two repeats without 
replacement. Thus, f1(s) could be the population response from either the first 
or the second repeat, with f2(s) being the response from the other. The displayed 
eigenspectra are averages over the ten different runs.
Simulations. To verify that cvPCA method was able to accurately estimate signal 
eigenspectra in the presence of noise, we analysed simulated data for which the true 
eigenspectrum was known by construction, and stimulus responses were corrupted 
by noise. Mathematical analyses (Supplementary Discussion 1.1 and 3.6) showed 
that noise consisting of multiplicative gain modulation, additive noise orthogonal 
to signal dimensions, or independent additive noise should not bias the expected 
eigenspectrum estimate, but that correlated additive noise in the stimulus dimen-
sions could potentially lead the eigenspectrum to be underestimated. We therefore 
first concentrated on this possibility.

To create the test data, we first simulated noise-free sensory responses, the eigen-
spectrum of which followed an exact power law, with three possible exponents: 
α = 0.5, 1.0, or 1.5. To simulate the responses of Nc = 10,000 neurons to Ns = 2,800 
stimuli with this exact eigenspectrum, we first constructed a set of random orthog-
onal eigenvectors by performing singular value decomposition on a Nc × Ns matrix 
A of independent standard Gaussian variates: A = USVT. We created a diagonal 
matrix Dα, of which the nth diagonal entry was n−α/2, and created the Nc × Ns 
matrix of simulated noise-free responses as φ = UDVT.
Additive noise. To simulate correlated additive noise in the stimulus space 
(Extended Data Fig. 5c), we constructed noise for which the eigenspectrum 
matched that observed experimentally. To find the empirical noise eigenspectrum, 
we first estimated the total variance of the nth PC as
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and estimated the signal variance using cvPCA as
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The estimated noise spectrum was the difference between total variance and 
signal variance: δ λ= Λ −ˆ ˆ ˆ

n n n. This spectrum reflects the summed magnitude of 
both correlated and uncorrrelated noise in the signal dimensions, and is shown in 
Extended Data Fig. 5b. Responses corrupted by additive noise were simulated as 
Φ + bαUΔVT, where Δ is a diagonal matrix with entries δn, and the scale factor bα 
ensured that, as in the data, the simulation showed a total of 14% reliable variance. 
The scale factors were found by search to be 2.62, 2.52, 2.41 for the signal eigen-
spectrum exponents α = 0.5, 1.0, 1.5, respectively.

Multiplicative noise. To simulate multiplicative noise (Extended Data Fig. 5d), 
responses were multiplied by an amplitude factor that was constant across neurons, 
but was drawn independently for each stimulus and repeat. To simulate an appro-
priately skewed distribution of gains, the scale factor was distributed as 0.5 plus an 
exponential random variate with mean parameter cα. The values of cα were found 
by search as those matching the observed 14% reliable variance, yielding 1.55, 
1.52, 1.40 for the signal eigenspectrum exponents α = 0.5, 1.0, 1.5, respectively.

To simulate a combination of additive and multiplicative noise (Extended Data 
Fig. 5e), responses were modulated by the additive mechanism described above 
and then modulated multiplicatively. The gain factors were bα = 0.55, 0.53, 0.51 
and cα = 0.65, 0.64, 0.59 for α = 0.5, 1.0, 1.5 respectively.
Two-photon noise. To investigate whether our two-photon deconvolution method 
could be biasing the estimated eigenspectrum, we simulated the effect of passing 
noise through this algorithm (Extended Data Fig. 5f).

To do so, we extended the simulations above to apply in the time domain. 
When simulating the additive noise, we allowed it to vary across all simulated 
two-photon imaging frames (replacing the matrix A used to compute the eigen-
vectors U and V by a 10,000 × 8,400 matrix providing three simulated frames 
per stimulus presentation). The gain modulation factor was assumed equal for  
all three frames corresponding to a single stimulus. The magnitudes of the  
additive noise and the gain factor giving 14% signal variance were found by 
search to be bα = 0.50, 0.50, 0.49 and cα = 0.68, 0.67, 0.66, for α = 0.5, 1.0, 1.5, 
respectively.

To simulate the response of GCaMP6s, we convolved these responses with an 
exponentially decaying kernel with a timescale of 2 s (because each time point 
in the data is 0.4 s, this corresponds to a decay timescale of five time points). To 
simulate shot noise, we added Gaussian white noise with a standard deviation of 
0.5. Next we deconvolved these noisy traces using OASIS39, with a timescale of 5 
time points and no sparsity constraints. The reduction in signal variance from this 
procedure was roughly 1%.

For all noise simulations, we estimated the signal eigenspectrum from two 
repeats using cvPCA. We found that cvPCA, but not ordinary PCA, correctly 
estimated the ground-true eigenspectrum, for all simulated power-law exponents 
α (Extended Data Fig. 5g).
Estimation of power-law exponent. We computed the linear fit of the eigenspec-
trum over the range of 11 to 500 dimensions for all recordings (and model fits) 
other than the 32 drifting grating recordings. For the 32-grating recordings, owing 
to noise and the length of the spectrum, we computed the power-law exponent 
from 5 to 30. The linear fit was performed in log–log space: the range of log(11) to 
log(500) was regressed onto the log of the eigenspectrum, sampled at points that 
were themselves logarithmically spaced between 11 and 500.
Sorting neurons and stimuli by correlations. In Extended Data Fig. 6, neurons 
and stimuli were sorted so that they were close to other neurons and stimuli with 
which they were correlated.

To do this, we first z-scored the binned activity of each neuron and computed 
PCs of its averaged activity across repeats. Each panel shows this for different PC 
projections of the data: 1, 2, 3–10, 11–40, 41–200 and 201–1,000. Stimuli were 
re-ordered so that the pattern of evoked population activity of each stimulus was 
most similar to the average of its neighbours. The stimulus order was initialized by 
sorting stimuli according to their weights on the top PC of activity, then dividing 
them into 30 clusters of equal size along this ordering. For 50 iterations, we com-
puted the mean activity of each cluster and smoothed this activity across clusters 
with a Gaussian, the width of which was annealed from 6 clusters to 1 over the 
first 25 iterations. Each stimulus was then reassigned to the cluster it was most 
correlated with. On the final pass, we upsampled the correlations of the stimuli 
with each cluster by a factor of 100 using kriging interpolation (smoothing constant 
of 1 cluster), resulting in a continuous assignment of stimuli along the 1D axis of 
the clustering algorithm. After sorting across stimuli, we smoothed across them 
to reduce noise, recomputed the PCs on the activity smoothed across stimuli, and 
repeated the procedure to sort neurons. The algorithm is available in Python and 
MATLAB at https://www.github.com/MouseLand/RasterMap. These plots were 
made using the MATLAB version of the code.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
All of the processed deconvolved calcium traces are available on figshare41 (https://
figshare.com/articles/Recordings_of_ten_thousand_neurons_in_visual_cortex_
in_response_to_2_800_natural_images/6845348), together with the image stimuli.

Code availability
The code is available on GitHub (https://github.com/MouseLand/stringer-pach-
itariu-et-al-2018b).
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Extended Data Fig. 1 | Reliability of single-neuron responses.  
a, The responses of a single neuron to the first repeat of 2,800 stimuli 
plotted against its responses to the second repeat of the same stimuli. 
b, Histograms of P values for Pearson correlation of responses on the 
two repeats. Each coloured histogram represents a different recording. 

In total, 81.4 ± 5.1% (mean ± s.e.m., n = 7 recordings) of cells were 
significant at P < 0.05. c, Histogram of the single-neuron percentage of 
stimulus-related variance across the population. Each coloured histogram 
represents a different recording; arrowheads (top) represent the mean for 
each experiment.
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Extended Data Fig. 2 | Comparison with electrophysiology. a, b, Single 
trial responses of 100 neurons to two repeats of 50 stimuli, recorded 
by two-photon calcium imaging. c, Distribution of tuning SNR for 
74,353 neurons recorded by two-photon calcium imaging. d, Average 
peristimulus time histogram of spikes recorded electrophysiologically in 

a separate set of experiments. The images shown were a random subset of 
700 images out of the total 2,800. The peristimulus time histogram reflects 
the average over all stimuli. The responses are z-scored across time for 
each neuron. e–g, Same as a–c for the electrophysiologically recorded 
neurons.



ArticlereSeArcH

Extended Data Fig. 3 | Single-neuron receptive fields estimated using 
reduced-rank regression and Gabor models. a, The receptive fields of 
159 randomly chosen neurons, estimated using reduced-rank regression. 
The receptive field map is z-scored for each neuron. b, An example Gabor 
fit to a single cell. c–h, Histograms showing the distribution of model 
parameters across cells. Each colour represents cells from one recording. 

i–n, Histograms showing the distribution of model parameters across 
cells when the model also has divisive normalization. o–u, Eigenspectra 
of Gabor population model responses to the different stimulus sets, as 
labelled. The unnormalized Gabors are shown in magenta, and the model 
with divisive normalization in black.
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Extended Data Fig. 4 | Stimulus-independent activity does not affect 
the measured eigenspectrum. a, To measure the effects of correlated noise 
variability on eigenspectra estimated by cvPCA, we examined the effect of 
projecting out different numbers of noise dimensions (estimated during 
periods of spontaneous grey-screen) from the responses in an example 

experiment. b, The same analysis as in a, averaged over all recordings. 
The presence of these noise dimensions made little difference to the 
estimated signal eigenspectrum other than to slightly reduce estimated 
eigenvalues in the highest and lowest dimensions. For the main analyses, 
32 spontaneous dimensions were subtracted.
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Extended Data Fig. 5 | Validating the eigenspectrum estimation method 
using simulations with the true noise distribution. a, Scatterplots 
illustrating the noise levels of each estimated PC. Each plot shows 
population activity projected onto the specified PC, for the first repeat 
(x axis) and second repeat (y axis). Each point represents responses to a 
single stimulus. b, Estimated level of noise variance in successive signal 
dimensions. Noise variance was estimated by subtracting the cvPCA 
estimate of signal variance from the total variance (see Methods).  
c, Recovery of ground-truth eigenspectrum in simulated data. We 
simulated responses of 10,000 neurons to 2,800 stimuli with a power 
spectrum decay of exactly α = 1, and added noise in the stimulus space, 
generated with the spectrum in b scaled to produce the same signal-to-
noise ratio as in the original neural data. The ground-truth eigenspectrum 
(black) is estimated accurately by the cvPCA method (blue). d, Same 
analysis as in c with multiplicative noise, in which the responses of all 

neurons on each trial were multiplied by a common random factor. The 
distribution of this factor was again scaled to recover the original signal-
to-noise ratio. e, Same analysis as in c with a combination of multiplicative 
and additive noise. f, Same analysis as in c, also including simulation of 
neural and two-photon shot noise before running a GCaMP deconvolution 
algorithm. g, Ten instantiations of the simulation were performed with 
ground-truth exponents of 0.5, 1.0 and 1.5. Error bars represent standard 
deviations of the power-law exponents estimated for each of the ten 
simulations. The dashed black line represents the ground-truth value.  
h–j, Comparison of cvPCA (yellow) and traditional PCA (green) 
algorithms in the presence of the additive + multiplicative noise 
combination. Whereas cvPCA recovered the ground-truth eigenspectrum 
(black) exactly, traditional PCA did not, resulting in overestimation of the 
top eigenvalues and failure to detect the ground-truth power law.
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Extended Data Fig. 6 | Successive PC dimensions encode finer stimulus 
features. Each plot shows the responses of 10,145 neurons to 2,800 
natural images, projected onto the specified PCs and then sorted along 
both axes so that correlated neurons and stimuli are close together. We 
then smoothed the matrix across neurons and stimuli with Gaussian 
kernels of widths of 8 neurons and 2 stimuli, respectively. Dimensions 

1–2 reveal a coarse, one-dimensional organization of the neurons and 
stimuli. Dimensions 3–10 reveal multidimensional structure, which 
involves different neural subpopulations responding to different stimuli. 
Dimensions 11–40 reveal finer-structured patterns of correlated selectivity 
among neurons. Dimensions 41–200 and 201–1,000 reveal even finer-
structured selectivity, which contained less neural variance.
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Extended Data Fig. 7 | Power-law scaling reflects correlation structure, 
not single-neuron statistics. a, The signal variance of the responses 
of each neuron are sorted in descending order; they approximately 
follow a power law with a decay exponent of α = 0.59. b, The same plot 
after z-scoring the recorded traces to equalize stimulus response sizes 
between cells; the distribution of single-neuron variance has become 
nearly flat. c, PC eigenspectra for z-scored data. Each coloured line 

represents a different recording. The dashed blue line shows the average 
eigenspectrum from the original, non-z-scored responses. The fact that 
the eigenspectrum power law is barely affected by equalizing firing rates, 
whereas the distribution of single-cell signal variance is altered, indicates 
that the power law arises from correlations between cells rather than from 
the distribution of firing rates or signal variance across cells.



Article reSeArcH

Extended Data Fig. 8 | Power-law eigenspectra in concatenated 
recordings. a–c, To investigate whether power-law eigenspectra apply to 
even larger populations, we were able to artificially double the number of 
recorded neurons by combining three pairs of recordings for which the 
imaging fields of view had similar retinotopic locations. Top, retinotopic 
locations of receptive fields (95% confidence intervals on the mean 
receptive field position of that recording), with each recording shown in a 
different shade of blue. Bottom, eigenspectrum of concatenated recordings 

in response to the 2,800 natural image stimuli; total population sizes 
19,571, 23,472 and 18,807 cells respectively. Each panel (a, b and c)  
represents one pair of recordings. d, Eigenspectrum exponents for 
random subsets of the combined populations (compare with Fig. 2j). The 
horizontal axis shows the population size relative to single recordings, 
so the merged population has size 2. The mean power-law exponent for 
fraction of neurons = 2 was α = 0.99 ± 0.02 (mean ± s.e.m.).
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Extended Data Fig. 9 | Eigenspectrum of electrophysiologically 
recorded data. We recorded neural activity electrophysiologically in 
response to 700 out of the 2,800 stimuli, and concatenated the recordings, 
resulting in a total of 877 neurons recorded across 6 experiments. a, With 
this smaller number of stimuli and neurons, convergence to a power 
law is not complete, and the exponent cannot be estimated accurately 
(compare with Fig. 2g–j). We therefore compared the electrophysiology 
data to the responses generated by these stimuli in 877 neurons sampled 
randomly from either a single two-photon imaging experiment (dark blue) 

or all experiments combined (light blue). The red and pink colours show 
electrophysiology eigenspectra with time bins of 50 ms or 500 ms; the red 
line shows the best linear fit to estimate the exponent. b, The blue curves 
represent power-law exponents estimated from the responses of different-
sized neuronal subpopulations to this set of 700 stimuli; the shading 
represents s.e.m. over different random subsets of neurons. The red and 
pink crosses denote estimated exponents from electrophysiology data for 
50-ms and 500-ms bin sizes.
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Extended Data Fig. 10 | Power-law scaling grows more accurate for 
increasing numbers of neurons and stimuli, for all stimulus ensembles. 
a, Eigenspectra estimated from a random subset of the recorded neurons, 
colour-coded by the fraction of neurons retained. b, Eigenspectra 

estimated from a random subset of stimuli, colour-coded by the fraction of 
stimuli retained. c, Correlation coefficient of the spectra plotted in a, b.  
d, Power-law exponent of the spectra plotted in a, b. Each row corresponds 
to a different ensemble of visual stimuli.
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